Spinal cord thermosensitivity: An afferent phenomenon?
نویسندگان
چکیده
We review the evidence for thermoregulatory temperature sensors in the mammalian spinal cord and reach the following conclusions. 1) Spinal cord temperature contributes physiologically to temperature regulation. 2) Parallel anterolateral ascending pathways transmit signals from spinal cooling and spinal warming: they overlap with the respective axon pathways of the dorsal horn neurons that are driven by peripheral cold- and warm-sensitive afferents. 3) We hypothesize that these 'cold' and 'warm' ascending pathways transmit all extracranial thermosensory information to the brain. 4) Cutaneous cold afferents can be activated not only by cooling the skin but also by cooling sites along their axons: we consider that this is functionally insignificant in vivo. 5) By a presynaptic action on their central terminals, local spinal cooling enhances neurotransmission from incoming 'cold' afferent action potentials to second order neurons in the dorsal horn; this effect disappears when the spinal cord is warm. 6) Spinal warm sensitivity is due to warm-sensitive miniature vesicular transmitter release from afferent terminals in the dorsal horn: this effect is powerful enough to excite second order neurons in the 'warm' pathway independently of any incoming sensory traffic. 7) Distinct but related presynaptic mechanisms at cold- and warm-sensitive afferent terminals can thus account for the thermoregulatory actions of spinal cord temperature.
منابع مشابه
The usefulness and limitations of single neuron recordings in evaluating the neural control of temperature regulation.
This paper deals with the possible significance that single neurons, which respond to local or remote temperature stimuli, may have in thermoregulatory control. Recordings of single neurons that appear to be involved in temperature regulation are easy to interpret as long as a functional association can be demonstrated. The processing of afferent thermal signals at different levels of the neura...
متن کاملChanges in afferent activity after spinal cord injury.
AIMS To summarize the changes that occur in the properties of bladder afferent neurons following spinal cord injury. METHODS Literature review of anatomical, immunohistochemical, and pharmacologic studies of normal and dysfunctional bladder afferent pathways. RESULTS Studies in animals indicate that the micturition reflex is mediated by a spinobulbospinal pathway passing through coordinatio...
متن کاملNeutralizing intraspinal nerve growth factor blocks autonomic dysreflexia caused by spinal cord injury.
Autonomic dysreflexia is a condition that develops after spinal cord injury in which potentially life-threatening episodic hypertension is triggered by stimulation of sensory nerves in the body below the site of injury. Central sprouting of small-diameter primary afferent fibers in the dorsal horn of the spinal cord occurs concurrently with the development of this condition. We propose a model ...
متن کاملREVIEWARTICLES Spinal cord mechanisms of pain
The spinal cord is the first relay site in the transmission of nociceptive information from the periphery to the brain. Sensory signals are transmitted from the periphery by primary afferent fibres into the dorsal horn of the spinal cord, where these afferents synapse with intrinsic spinal dorsal horn neurones. Spinal projection neurones then convey this information to higher centres in the bra...
متن کاملSpinal cord mechanisms of pain.
The spinal cord is the first relay site in the transmission of nociceptive information from the periphery to the brain. Sensory signals are transmitted from the periphery by primary afferent fibres into the dorsal horn of the spinal cord, where these afferents synapse with intrinsic spinal dorsal horn neurones. Spinal projection neurones then convey this information to higher centres in the bra...
متن کامل